296 research outputs found

    Phase noise characterization of injection locked semiconductor lasers to a 250 MHz optical frequency comb

    No full text
    Two lasers are simultaneously injection locked to the same comb mode and the injection locking quality is assessed in terms of phase noise and phase variance (1 kHz-10 MHz) for various injected powers

    Quadrature decomposition of optical fields using two orthogonal phase sensitive amplifiers

    No full text
    We propose a new technique to optically process coherent signals by simultaneously extracting their two (I and Q) quadrature components into two orthogonal polarizations at the same frequency. Two possible implementations are demonstrated

    Efficient binary phase quantizer based on phase sensitive four wave mixing

    No full text
    We experimentally demonstrate an efficient binary phase quantizer operating at low pump powers. Phase-sensitive operation is obtained by polarization mixing the phase-locked signal/idler pair in a degenerate dual-pump vector parametric amplifier

    Phase sensitive amplifiers for regeneration of phase encoded optical signal formats

    No full text
    We discuss the application of phase sensitive fiber optical parametric devices for the regenerative processing of high baud rate optical signals. We present recent advances in phase-sensitive amplification technology and its application to the regeneration of phase-encoded signals. By combining four wave mixing based parametric effects in highly nonlinear optical fibers and injection locking assisted synchronisation of multiple coherent lasers, we demonstrate how it possible to derive phase regeneration in signals with more than two levels of phase encoding

    Novel polarization-assisted phase sensitive optical signal processor requiring low nonlinear phase shifts

    No full text
    We demonstrate a new scheme to achieve binary step-like phase response and high phase-sensitive extinction ratio at low powers. Phase-sensitive operation is achieved by polarization filtering phase-locked signal/idler in a degenerate dual-pump vector parametric amplifier

    Transfer of ultra-low phase noise microwave references over the JANET Aurora fibre network using a femtosecond optical frequency comb

    No full text
    An ultra-low phase noise microwave frequency is transferred over 82 km of installed fibre by propagation of a 30 nm bandwidth optical frequency comb (104 modes). The phase noise induced along the fibre by vibrations and thermal effects is suppressed by implementing a noise cancellation scheme where a portion of the light is sent back to the transmitter through the same fibre. The 6th harmonic of the repetition rate detected before and after the pulse train has travelled a round trip are phase compared and used to generate an error signal that controls a fibre stretcher to compensate for the fibre-induced phase fluctuations. Optical amplifiers are used to compensate for the fibre attenuation and dispersion compensation modules are also employed

    Phase-sensitive wavelength conversion based on cascaded quadratic processes in periodically poled lithium niobate waveguides

    No full text
    We propose and experimentally demonstrate a novel scheme of phase-sensitive wavelength conversion, based on a combination of cascaded second-order nonlinear effects in two cascaded periodically poled lithium niobate waveguides

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page

    PSA-based all-optical multi-channel phase regenerator

    No full text
    We demonstrate simultaneous phase regeneration of six NRZ BPSK signals in a single nonlinear medium using FWM-based phase sensitive amplification. BER measurements confirm OSNR improvement and negligible cross-talk across all the regenerated channels, impaired with broadband phase noise

    All-optical phase-regenerative multicasting of 40 Gbit/s DPSK signal in a degenerate phase sensitive amplifier

    No full text
    We demonstrate all-optical 1-to-5 differential phase-shift keyed (DPSK) wavelength multicasting at 40 Gbit/s using a degenerate four-wave mixing (FWM) based phase sensitive amplifier (PSA). Phase regenerative properties are reported with a sensitivity improvement of more that 10 dB
    • …
    corecore